

Multi-Function Research CATM1 Node (MFR-NODE-C)

Manual

Models: MNCM1, MNCM2

Contents

1. Introduction	4
2. Connecting Sensors	5
3 Connect The Internal Battery	7
4. Connect External DC Dower	
4. Connect External DC Power	7
5. LED Status	7
6. Device Operation	8
6.1 SDI-12 Configuration	8
6.3 Analog Input Configuration	8
6.4 SD Card Logging	8
7. Device Configuration	9
7.1 General Node Configuration Commands	10
7.1.1 Firmware Version – version	10
7.1.2 Save Current Device Configuration – save	10
7.1.3 Reload Saved Configuration – load	10
7.1.4 Firmware Update Mode – bootloader	11
7.1.5 Set low battery mode threshold – battery threshold	12
7.1.6 Command List – help	12
7.1.7 Reset to Factory Defaults – config reset	12
7.1.8 Logging interval / Period between reports – report period	13
7.2 LtE [™] Communication Configurations - Modem Settings	13
7.2.1 Modem Access Point (APN) – modem apn	13
7.2.2 APN Username – modem usr	14
7.2.3 APN Password – modem pwd	14
7.2.4 APN Authentication – modem auth	14
7.3 MQTT Communication Configurations - Settings	15
7.3.1 MQTT Hostname – mqtt host	15
7.3.2 MQTT Port – mqtt port	

1 Г
16
16
16
17
17
17
19
19
20
20
21
21
22
22
22
23
23
24
24
24
25

The ICT International <u>MFR-NODE-C</u> is a CAT-M1/NB-IoT data storage and transmission device. SD Card Data is stored in CSV format. The device is powered by a lithium ion battery pack (6.7Ah or 13.4Ah) and is charged by external 12-24V DC input – typically a 10W or 20W solar panel. Available sensor inputs are:

- □ SDI-12: Default 2x, up to 6 sensors on request.
- Analogue (4 single-ended or 2 differential, 3V, 5V or 12V selectable excitation),
- □ and 4 digital pulse inputs.

MFR-NODE-C Version MNCM1 (Legacy Model) includes: Direct Battery connection and Solar connection.

MFR-NODE-C Version MNCM2 (Improves on MNCM1) with the inclusion of:

- Extra Power and Grounds connections for all sensor/bus inputs for easier wiring.
- Adds Green Connector for isolation of Solar Panel/DC Input, which in turn allows larger range of wiring sizes.
- Adds Power Switch to isolate the Battery, allowing the Battery cable to stay connected for shipping/integration.

Figure 1. The MFR-NODE-C Box

Figure 2. Inside The MFR-NODE Box - Legacy Version MNCM1

Figure 3. Inside The MFR-NODE Box - Version MNCM2

ICT INTERNATIONAL

4

2.1 Sensor Connector Locations on the MFR-Node board

A connector is available on the right-hand side of the board for each type of sensor. SDI-12 is below the solar input. Analog is below SDI-12 (A1 to A4). Digital is D1 to D4.

Figure 5. MFR-NODE-C Hardware Version MNCM2

2.2 SDI-12

To connect an SDI-12 sensor, insert the Ground Wire of the sensor into the connector labelled GND. Insert the Data line into the connector labelled B. Insert the Power wire into the connector labelled 12V. Hardware variant 2 physically supports the connection of 2x SDI-12 sensors. For both hardware variants 1 & 2 additional SDI-12 sensors can be bussed off the board.

Figure 6. MFR-NODE-C Version MNCM1

Figure 4. MFR-NODE-C Hardware Version MNCM1

Figure 7. MFR-NODE-C VERSION MNCM2

2.3 Analog Sensors

2.3.1 Analog Excitation Voltage Selection

To connect analog sensors, first ensure that the excitation voltage is set correctly. Available voltages are 12V (top), 5V (middle) and 3V (bottom). Put the jumper on the pins for the excitation required (shown below on 5V). Wire sensors according to the sensor manual. The V inputs supply the selected Excitation to the sensor; GND is ground. A1 to A4 are the analog channels. If using differential sensors, use A1 and A2 or A3 and A4.

Figure 8. Voltage Selection

2.3.2 Wiring Analog Sensors

Figure 10. MNCM2 Analog Wiring

Figure 9. MNCM1 Analog Wiring

2.4 Digital (Pulse) Sensors

Wire the sensor according to the sensor manual. Most Digital Pulse sensors (rain gauges, anemometers, etc.) are passive and should be wired between an input (D1 to D4) and ground. If excitation is required, use the 3V pin.

Figure 11. MNCM1 Digital Wiring

Figure 12. MNCM2 Digital Wiring

6

3. Connect The Internal Battery

When the node is mounted and ready, it is important to ensure that the battery is connected to the board first. Next the power switch can be turned on. After the node is booted for the first time, then external power can be connected - such as a 12V or 24V solar panel.

Figure 13. Battery and Power Switch (shown turned off)

4. Connect External DC Power

The input for external power is located on the top right of the board, labelled SOLAR.

This input is polarised, please ensure that positive is inserted in the + terminal and negative in the -.

The MFR Node has an on-board solar charge controller and can be directly connected to a 12V or 24V solar panel. Alternatively, a 12V to 24V mains DC power supply can be connected for indoors use.

Please ensure that the MFR Node's internal battery is plugged in before (and when) using solar power.

Figure 14. MNCM1

Figure 15. MNCM2

5. LED Status

The main status LED is used to indicate the following:

- LIGHT BLUE: Registering to the cellular network
- DARK BLUE: Collecting sensor data (should usually be too quick to notice)
- YELLOW/ORANGE: Transmitting data
- D **PURPLE/PINK**: Diagnostic during start-up or sleep; error if permanently on
- **GREEN:** USB Idle or Node not enabled/configured
- □ WHITE: Not used in most cases

The modem status LED has different flash rates, used to indicate the following:

- □ FLICKER SLOWLY: (200ms High/1800ms Low) Network Searching
- FLICKER SLOWLY: (1800ms High/200ms Low) Idle
- □ FLICKER QUICKLY: (125ms High/125ms Low) Data transfer is ongoing
- □ ALWAYS ON: Voice Calling (Issues/Unused)

Figure 16. Main Status LED

Figure 17. Modem Status LED

6.1 SDI-12 Configuration

The MFR Node's SDI-12 communications can be customised to allow for interfacing with any sensor implementing the SDI-12 protocol. See section 7.5 for a detailed description of the configuration interface of the device.

Adding or modifying an SDI-12 command for taking a measurement from a sensor uses the sdi12 add command. Commands can be disabled/enabled using the sdi12 activate command – by default, commands are enabled when they are added or modified. Other commands can be sent directly to the sensor using the sdi12 send command.

For more information on SDI-12 related commands, see section 7.5.

6.3 Analog Input Configuration

The MFR Node's analog inputs can be configured as 4 single ended, 2 differential, or a combination. This is done using the adc ch config command. A differential channel is a pair of single ended channels, as such, only channel 1 and 3 can be configured as differential.

For more information on analogue configuration, see section 7.6.

6.4 SD Card Logging

SD card logging is enabled by sd enable. The MicroSD card will be formatted by the MFR Node. Data will be logged at the report interval in standard CSV format. The data is timestamped by the MFR-Node's RTC, which is synced daily to the cellular network time.

For more information on SD Card Logging, see section 7.8.

Configuration Program Example

7. Device Configuration

The ICT International MFR Node is configured (i.e. identified and authenticated) over USB serial console using a terminal/terminal emulator. It is compatible with Windows 10, Mac OS and Linux.

One terminal emulator we recommend is <u>Putty</u>, which can be downloaded from <u>https://www.putty.org/</u>.

All commands are entered as ASCII text and will return any response as ASCII text.

Connecting an MFR Node to a computer via the Micro USB port (top right, fig. 1) will provide a serial port for configuration.

Recommended settings are as follows:

- Baud Rate: 115200 baud
- □ Bits: 8
- Parity: None
- □ Stop Bits: 1
- □ Flow Control: Disabled.

Figure 17. Version MNCM2

7.1 General Node Configuration Commands

These commands are entered into a terminal or terminal emulator such as <u>Putty</u>, <u>https://www.putty.org/</u>, to action several types of commands to the MFR-Node.

7.1.1 Firmware Version – version

Command Input: version

Compatible: Device Firmware Versions > 1.2

Command Description: Returns information about the device firmware version and configured frequency.

Command Type	Syntax Used	Response Type	Example Result of Command
Get	version	<string></string>	Definium Technologies Pty Ltd LoRaWAN Class-A Sensor 235c0e89-dirty Luna Station 4000096001-"AS923"

7.1.2 Save Current Device Configuration – save

Command Input: save

Compatible: All Device Firmware Versions

Command Description: Saves the running configuration to permanent storage.

Command Type	Syntax Used	Response Type	Example Result of Command
Action	save	Saved config	Saved config

7.1.3 Reload Saved Configuration – load

Command Input: load

Compatible: All Device Firmware Versions

Command Description: Saves the running configuration to permanent storage.

Command Type	Syntax Used	Response Type	Example Result of Command
Action	load	Loaded config	Loaded config

7.1.4 Firmware Update Mode – bootloader

Command Input: bootloader

Compatible: All Device Firmware Versions

Command Description: Puts the device into firmware update mode. MFR-Node Firmware can be downloaded from: <u>http://ictinternational.com/support/software/</u>

To firmware update the node:

Install Python (make sure to add to path when prompted) - https://www.python.org/downloads/

Then run the following commands in a cmd window:

python -m pip install -U pip pip install pyserial

Connect to the node using a terminal emulator (e.g: putty - https://www.putty.org/)

Disable the node by typing in: enable 0 Run command: bootloader

The device will stop flashing LED and appear to disconnect via USB.

Open windows cmd, type in: cd (directory where you saved the firmware) Then (in cmd): python windows_loader.py fw-4000097003-<frequency>.bin It will take 1-2 minutes, then once the firmware flash is done the USB will reconnect.

Unplug the node for ~30 seconds, then you can reconnect and reprogram the node.

Command Type	Syntax Used	Response Type
Action	bootloader	Node disconnects from serial interface

7.1.5 Set low battery mode threshold – battery threshold

Command Input: battery threshold

Compatible: All Device Firmware Versions

Command Description: Sets the battery threshold, below which the device will enter low power mode and cease regular transmission until the battery has charged above the threshold. By default, this is set to 3.4 volts or 3400 milivolts.

Command Type	Syntax Used	Response Type	Example Result of Command
Get	battery threshold	<voltage></voltage>	battery threshold 3400
Set	battery threshold <voltage></voltage>	<voltage></voltage>	battery threshold 3400 3400

Parameter	Туре	Description
<voltage></voltage>	Number	Low power cutoff in mV.

7.1.6 Command List – help

Command Input: help

Compatible: All Device Firmware Versions

Command Description: Lists all available commands with brief descriptions of their functions.

Command Type	Syntax Used	Response Type
Get	help	List of commands

7.1.7 Reset to Factory Defaults – config reset

Command Input: config reset

Compatible: Device Firmware Versions > 1.2

Command Description: Resets the running configuration factory defaults.

Command Type	Syntax Used	Response Type	Example Result of Command
Get	config reset	Reset app config to defaults	Reset app config to defaults

7.1.8 Logging interval / Period between reports – report period

Command Input: report period

Compatible: Device Firmware Versions > 1.2

Command Description: Command for managing the device's state transition timings. Initial wait time on failed communications before retrying. Doubles each failure until it reaches backoff max.

Command Type	Syntax Used	Example Command	Response Type	Example Result of Command
Get	report period	report period	<string></string>	Report Period: 900 sec Current: 12 Last: 0 Next:0
Set	report period <period></period>	report period 600	<string></string>	report period 600 Report Period: 600 sec Current: 26 Last: 0 Next:0

Parameter	Туре	Description
<period></period>	Number	Time in seconds between reports.
<time></time>	Number	Current device timestamp
<last></last>	Number	Timestamp that state last triggered at
<next></next>	Number	Timestamp of next state trigger

7.2 LtE[™] Communication Configurations - Modem Settings

These commands are entered into a terminal or terminal emulator such as <u>Putty</u>, <u>https://www.putty.org/</u>, to action several types of commands to the MFR-Node.

7.2.1 Modem Access Point (APN) – modem apn

Command Input: modem apn

Command Description: Sets the modem access point (APN) specific to the SIM card provider.

Command Type	Syntax Used	Example Command	Response Type	Example Result of Command
Get	modem apn	modem apn	<string></string>	modem apn telstra.m2m
Set	modem apn <string></string>	modem apn telstra.m2m	<string></string>	modem apn telstra.m2m

7.2.2 APN Username – modem usr

Command Input: modem usr

Command Description: Set the Modem username if required by the SIM card provider you are using.

Command Type	Syntax Used	Example Command	Response Type	Example Result of Command
Get	modem usr	modem usr	<string></string>	Modem username:
Set	modem usr <string></string>	modem usr yourMSID@uscc.net	<string></string>	Modem username: yourMSID@uscc.net

7.2.3 APN Password – modem pwd

Command Input: modem pwd

Command Description: Set the Modem password if required by the SIM card provider you are using.

Command Type	Syntax Used	Example Command	Response Type	Example Result of Command
Get	modem pwd	modem pwd	<string></string>	Modem password:;
Set	modem pwd <string></string>	modem pwd your MSID	<string></string>	Modem password: your MSID

7.2.4 APN Authentication – modem auth

Command Input: modem auth

Command Description: Enable Password Authentication Protocol (PAP) and Challenge Handshake Authentication Protocol (CHAP).

Command Type	Syntax Used	Example Command	Response Type	Example Result of Command
Get	modem auth	modem auth	<status></status>	Modem auth method: 0
Set	modem auth <bool></bool>	modem auth 1	<status></status>	Modem auth method: 1

Parameter	Туре	Description
<bool></bool>	Number	Password Authentication Protocol (PAP) and/or Challenge Handshake Authentication Protocol (CHAP) status to be set: 0: none 1: pap 2: chap 3: pap or chap

7.3 MQTT Communication Configurations - Settings

These commands are entered into a terminal or terminal emulator such as <u>Putty</u>, <u>https://www.putty.org/</u>, to action several types of commands to the MFR-Node.

7.3.1 MQTT Hostname – mqtt host

Command Input: mqtt host

Command Description: Enter in the hostname of your MQTT broker.

Command Type	Syntax Used	Example Command	Response Type	Example Result of Command
Get	mqtt host	mqtt host	<string></string>	MQTT Hostname:
Set	mqtt host <string></string>	mqtt host ictcatm1.com	<string></string>	MQTT Hostname: ictcatm1.com

7.3.2 MQTT Port – mqtt port

Command Input:mqtt portCommand Description:Set network port to connect to (optional, 0 = default based on TLS setting).

Command Type	Syntax Used	Example Command	Response Type	Example Result of Command
Get	mqtt port	mqtt port	<int></int>	mqtt port 0
Set	mqtt port <int></int>	mqtt port 1883	<int></int>	mqtt port 1883

7.3.3 MQTT Username – mqtt user

Command Input:mqtt userCommand Description:The username to use with your MQTT broker.

Command Type	Syntax Used	Example Command	Response Type	Example Result of Command
Get	mqtt user	mqtt user	<string></string>	MQTT User:
Set	mqtt user <string></string>	mqtt user ictinternational	<string></string>	MQTT User: ictinternational

7.3.4 MQTT Password – mqtt pass

Command Input:mqtt passCommand Description:The corresponding password for the username to use with your MQTT broker.

Command Type	Syntax Used	Example Command	Response Type	Example Result of Command
Get	mqtt pass	mqtt pass	<string></string>	MQTT Password:
Set	mqtt pass <string></string>	mqtt pass 1234	<string></string>	MQTT Password: 1234

7.3.5 MQTT Topic – mqtt topic

Command Input: mqtt topic

Command Description: UTF-8 string that the broker uses to filter messages for each connected client. The topic consists of one or more topic levels. Each topic level is separated by a forward slash (topic level separator).

Command Type	Syntax Used	Example Command	Response Type	Example Result of Command
Get	mqtt topic	mqtt topic	<string></string>	MQTT Topic:
Set	mqtt topic <string></string>	mqtt topic	<string></string>	MQTT Topic: ict/data/ mfr/1K704

7.3.6 MQTT QoS Level – mqtt qos

Command Input: mqtt user

Command Description: Quality of Service (QoS) level is an agreement between the sender of a message and the rceiver of a message that defines the guarantee of delivery for a specific message. There are 2 QoS levels: At most once (0); At least once (1).

Command Type	Syntax Used	Example Command	Response Type	Example Result of Command
Get	mqtt qos	mqtt qos	<bool></bool>	0
Set	mqtt qos <bool></bool>	mqtt qos 1	<bool></bool>	1

7.3.7 Use MQTT over TLS (MQTTS) – mqtt tls

Command Input:mqtt tlsCommand Description:Use MQTT over TLS (MQTTS): disabled (0); enabled (1).

Command Type	Syntax Used	Example Command	Response Type	Example Result of Command
Get	mqtt tls	mqtt tls	<bool></bool>	disabled
Set	mqtt tls <bool></bool>	mqtt tls 1	<bool></bool>	enabled

7.3.8 Report in JSON rather than CSV – mqtt json

Command Input: mqtt json Command Description: Send data in json format rather than csv format (default): disabled (0); enabled (1).

Command Type	Syntax Used	Example Command	Response Type	Example Result of Command
Get	mqtt json	mqtt json	<bool></bool>	disabled
Set	mqtt json <bool></bool>	mqtt json 1	<bool></bool>	enabled

7.3.9 MQTT Connection is for Azure IoT Hub– mqtt azure

Command Input: mqtt azure

Command Description: Azure Mode settings reporting data in .json, and will expect a Azure string as per section 7.3.10.

Command Type	Syntax Used	Example Command	Response Type	Example Result of Command
Get	mqtt azure	mqtt azure	<status></status>	disabled
Set	mqtt azure <bool></bool>	mqtt azure	<status></status>	mqtt azure 1 enabled

Parameter	Туре	Description
<bool></bool>	Number	mqtt azure to be set: 0: Unjoined 1: Joined
<status></status>	String	mqtt azure status string. Options: enabled: mqtt azure enabled disabled: mqtt azure disabled

7.3.10 MQTT Azure Configuration String – mqtt azureconn

Command Input: mqtt azureconn

Command Description: To configure the node to communicate to the Azure Hub it must contain in a string organised below to include the following: HostName, Device ID and Shared Access Key, please note the Shared Access Key will end in an equals (=) sign:.

Command Type	Syntax Used	Example Command	Response Type	Example Result of Command
Get	mqtt azureconn	mqtt azureconn	<status></status>	Azure IoT Hub Hostname: Azure IoT Hub Device ID: Azure IoT Hub Device Key:
Set	mqtt azureconn <string></string>	see parameter description below	<status></status>	Azure IoT Hub Hostname: ictcatm1.com Azure IoT Hub Device ID: Azure IoT Hub Device Key:

Parameter	Туре	Description
<status></status>	String	Example Layout of the Command String to enter will be: mqtt azureconn HostName=xxxxxxx.azure-devices.net; DeviceId=yyyyyyyyyyyyy;SharedAccessKey=Base64EncodedAccessKeyGoesHere=

7.3.11 Enable MQTT Last Will Testament (LWT) – mqtt will enable

Command Input: mqtt will enable

Command Description: Enable a LWT message to be sent to other clients if device doesn't connect to broker.

Command Type	Syntax Used	Example Command	Response Type	Example Result of Command
Get	mqtt will enable	mqtt will enable	<status></status>	disabled
Set	mqtt will enable <bool></bool>	mqtt will enable 1	<status></status>	enabled

Parameter	Туре	Description
<bool></bool>	Number	Enable a LWT message to be sent to other clients if device doesn't connect to broker: 0: disable

7.3.12 Enable MQTT Last Will Testament (LWT) Topic – mqtt will topic

Command Input: mqtt will topic

Command Description: The LWT topic that the broker will publish to.

Command Type	Syntax Used	Example Command	Response Type	Example Result of Command
Get	mqtt will topic	mqtt will topic	<string></string>	MQTT LWT Topic:
Set	mqtt will topic <string></string>	mqtt will topic device mlna1902/ status	<string></string>	MQTT LWT Topic: device mlna1902/status

7.3.13 Enable MQTT Last Will Testament (LWT) Message- mqtt will msg

Command Input:mqtt will msgCommand Description:LWT Message posted to the designated LWT topic.

Command Type	Syntax Used	Example Command	Response Type	Example Result of Command
Get	mqtt will msg	mqtt will msg	<string></string>	MQTT LWT Message:
Set	mqtt will msg <string></string>	mqtt will msg device mlna1902 offline	<string></string>	MQTT LWT Message: device mlna1902 offine

7.5 SDI-12

7.5.1 SDI-12 add command – sdi12 add

Command Input: sdi12 add

Compatible: Device Firmware Versions

Command Description: Add or modify SDI-12 command in slot. Available SDI-12 commands are: Measurement (M!), Concurrent (C!) and Result (R!).

Measurement and Concurrent must use the Measure type command. Result must use the Data command

Older Firmware Examples:

sdi12 add 0 M 0C0! 3 3 0D0! 111

Use SDI-12 command id/slot 0 to send a Concurrent measurement command to SDI-12 sensor address 0, delay 3 seconds, value length 3, send a data command to sensor address 0, get 3 parameters. Older firmware models explicit delay and value lengths.

Newest Firmware Examples:

sdi12 add 0 M 0C0! 0D0! 111

Use SDI-12 command id/slot 0 to send a Concurrent measurement command to SDI-12 sensor address 0.

The sensor will return a response in the form of atttnn where a = the sensor address, ttt = the specified time in seconds until the sensor will have the measurements ready, and nn = the number of measurement values.

After the specified wait time, the node will send a data command ODO! to sensor address 0, it will return all available results but the 111 sensor measurement masking will only prepare and transmit the first three parameters. Newest firmware models don't explicit delay and value lengths.

Command Type	Syntax Used	Response Type
Measure/Data	sdil2 add <id> M <measure command=""> <data command=""> <mask></mask></data></measure></id>	<string></string>

Parameter	Туре	Description
<id></id>	Number	0-9 Slot ID to add or modify.
<measure command></measure 	String	SDI-12 measure command to execute on specified address.
<data command=""></data>	String	SDI-12 command to return data on specified address.
<mask></mask>	Binary	Sensor measurement masking. Length of the mask can be equal to the number of readings. E.g: the mask to select the first and fourth reading for an 8 reading data command is: 10010000, where 1 is on and 0 is off.

7.5.2 Send SDI-12 Command – sdi12 send

Command Input: sdi12 send

Compatible: All Device Firmware Versions

Command Description: Send an SDI-12 command. Can be used for identifying sensors on a bus, configuring SDI-12 addresses, or any other sensor specific functions.

Туре	Syntax Used	Example Command	Response Type	Example Result of Command
Action	sdi12 send <command/>	sdi12 send	<response></response>	sdi12 send OA1! 1

Parameter	Туре	Description	
<command/>	String	SDI-12 command to execute.	
<response></response>	String	Response from SDI-12 command, command dependant	

Commands	Description
aI!	Sends sensor identification request for the sensor at address $ { m a}$
aAb!	Change sensor address from a to b
?!	Query sensor address, can only be done when a single sensor is connected

7.5.3 Delete all SDI-12 Commands – sdi12 remove all commands

Command Input: sdi12 remove all commands

Compatible: All Device Firmware Versions

Command Description: Removes all configured SDI-12 command slots.

Туре	Syntax Used	Response Type	Example
Action	sdi12 remove all commands	<string></string>	sdi12 remove all commands SDI12 Commands Erased

7.6 Analog Commands

7.6.1 Analog Channel Configuration – adc ch config

Command Input: adc ch config

Compatible: Device Firmware Versions > 1.2

Command Description: Enables and sets the configuration of the analog channels.

Command Type	mmand Type Syntax Used	
Set	adc ch config <mask></mask>	adc ch config DOSS

Parameter	Туре	Description
<mask></mask>	String	 State of each analog channel: S: Single Ended, available for channels 1-4 D: Differential, available for channels 1 and 3, channels 2 and 4 must be set to off respectively O: Off – disables channel

7.6.2 Analog Single Ended Test – adc single test

Command Input: adc single test

Compatible: All Device Firmware Versions

Command Description: Display readings for the 4 single-ended analog channels, in μ V.

Command Type	Syntax Used	Response Type	Example Result of Command
Action	adc single test	<string></string>	adc single test ADC SING=160,129,175,121

7.6.3 Analog Differential Test – adc diff test

Command Input: adc diff test

Compatible: All Device Firmware Versions

Command Description: Display readings for the 2 differential channels, in uV.

Command Type	Syntax Used	Response Type	Example Result of Command
Action	adc diff test	<string></string>	adc diff test ADC DIFF=39,50

7.6.4 Disable Constant Excitation – persistent pwr

Command Input: persistent pwr

Compatible: Device Firmware Versions > 1.2

Command Description: Enables/disables constant sensor excitation for both SDI-12 and analog. Please contact ICT International to confirm that this is suitable for your application.

Command Type	Syntax Used	Response Type	Example Result of Command
Get	persistent power	<string></string>	persistent power enabled
Set	persistent power <enable></enable>	<string></string>	persistent power 0 disabled

Parameter	Туре	Description
<enable></enable>	Number	Enable (1)/Disable (0)

7.6.5 Calibrate Analog Channel – adc ch calibrate

Command Input: adc ch calibrate

Compatible: Device Firmware Versions > 1.2

Command Description: Used to precisely calibrate analog channels. This is generally not necessary – Contact ICT International to confirm that this is applicable to your application. Calibration requires a power source that can cover 1mV to 1V accurately.

Procedure: (Repeat on all channels necessary.)

Set the power supply to 1mV and measure the voltage into the connector. Enter the following command: adc ch calibrate <channel> 0 <voltage measured as μ V> For example: adc ch calibrate 1 0 1024

Set the power supply to 1V and measure the voltage into the connector. Enter the following command: adc ch calibrate <channel> 1 <voltage measured as μ V>

For example: adc ch calibrate 1 1 1001024

7.6.6 Disable voltage divider in ADC calculation

Command Input: adc div

Compatible: Device Firmware Versions > 1.2

Command Description: Disables the resistor divider in the calculation and calibration of the ADC. Contact ICT International to see if this is applicable to your application. Requires hardware modification and can only be used with sensors with < 3V output.

Command Type	Syntax Used	Response Type	Example Result of Command
Get	adc div	<string></string>	adc div enabled
Set	adc div <enable></enable>	<string></string>	adc div 0 disabled

Parameter	Туре	Description
<enable></enable>	Number	Enable (1)/Disable (0)

7.7 Digital Input Commands

7.7.1 Enable Digital Inputs - counter enable

Command Input: counter enable

Compatible: All Device Firmware Versions

Command Description: Enable or disable logging and upload of digital inputs.

Command Type	Syntax Used	Response Type	Example Result of Command
Get	counter enable	<string></string>	counter enable enabled
Set	counter enable <enable></enable>	<string></string>	counter enable 1 disabled

Parameter	Туре	Description
<enable></enable>	Number	Enable (1)/Disable (0)

7.7.2 Test Digital Inputs – counter test

Command Input: counter test

Compatible: All Device Firmware Versions

Command Description: Displays current values of the digital inputs

7.8 MFR-Node SD Card Commands

7.8.1 Enable SD Card Logging – sd enable

Command Input: sd enable

Compatible: All Device Firmware Versions

Command Description: Enable or disable logging of data to the onboard MicroSD card. Note that the log file uses instrument RTC time unless an offset has been set. See section 10.8.3.

Command Type	Syntax Used	Response Type	Example Result of Command
Get	sd enable	<string></string>	sd enable enabled
Set	sd enable <enable></enable>	<string></string>	sd enable 1 enabled

Parameter	Туре	Description
<enable></enable>	Number	Enable (1)/Disable (0)

7.8.2 Test SD Card – sd test

Command Input: sd test

Compatible: All Device Firmware Versions

Command Description: Confirms that the device is able to save data to the MicroSD card.

Command Type	Syntax Used	Response Type	Example Result of Command
Action	sd test	<string></string>	sd test SD CARD=WRITE=OKAY,READ=OKAY

Enabling better global research outcomes in soil, plant & environmental monitoring.