ICT International

Advancing soil, plant and environmental decision making

User manuals and software for the SFM1 Sap Flow Meter

Technical Specifications
SFM1 Sap Flow Meter Installed on a eucalyptus
Downloads Available
References for SFM1x, SFM1 and HRM30
Ali, A., Al-Mulla, Y. A., Charabi, Y., Al-Wardy, M., & Al-Rawas, G. (2021). Use of multispectral and thermal satellite imagery to determine crop water requirements using SEBAL, METRIC, and SWAP models in hot and hyper-arid Oman. Arabian Journal of Geosciences, 14(7), 1–21. https://doi.org/10.1007/s12517-021-06948-0
Ambrose, A. R., Sillett, S. C., Koch, G. W., Van Pelt, R., Antoine, M. E., & Dawson, T. E. (2010). Effects of height on treetop transpiration and stomatal conductance in coast redwood (Sequoia sempervirens). Tree Physiology, 30(10), 1260–1272. https://doi.org/10.1093/treephys/tpq064
Ambrose, A. R., Baxter, W. L., Wong, C. S., Burgess, S. S. O., Williams, C. B., Næsborg, R. R., Koch, G. W., & Dawson, T. E. (2016). Hydraulic constraints modify optimal photosynthetic profiles in giant sequoia trees. Oecologia, 182(3), 713–730. https://doi.org/10.1007/s00442-016-3705-3
Amini Fasakhodi, M., Djuma, H., Sofokleous, I., Eliades, M., & Bruggeman, A. (2024). Modeling water balance components of conifer species using the Noah-MP model in an eastern Mediterranean ecosystem. Hydrology and Earth System Sciences Discussions, 1–35. https://doi.org/10.5194/hess-2024-107
Amini Fasakhodi, M., Djuma, H., Sofokleous, I., Eliades, M., & Bruggeman, A. (2024). Modeling water balance components of conifer species using the Noah-MP model in an eastern Mediterranean ecosystem. https://doi.org/10.5194/hess-2024-107
Antezana-Vera, S. A., & Marenco, R. A. (2021). Transpiration of Swartzia tomentifera in response to microclimatic variability in the central Amazon: the net effect of vapor pressure deficit. CERNE, e-102999. https://cerne.ufla.br/site/index.php/CERNE/article/view/2999
Apgaua, D. M. G., Ishida, F. Y., Tng, D. Y. P., Laidlaw, M. J., Santos, R. M., Rumman, R., Eamus, D., Holtum, J. A. M., & Laurance, S. G. W. (2015). Functional Traits and Water Transport Strategies in Lowland Tropical Rainforest Trees. PLOS ONE, 10(6), e0130799. https://doi.org/10.1371/journal.pone.0130799
Asiimwe, G., Jaafar, H., Haidar, M., & Mourad, R. (2022). Soil Moisture or ET-Based Smart Irrigation Scheduling: A Comparison for Sweet Corn with Sap Flow Measurements. Journal of Irrigation and Drainage Engineering, 148(6), 04022017.
Augustaitis, A. (2021). Intra-Annual Variation of Stem Circumference of Tree Species Prevailing in Hemi-Boreal Forest on Hourly Scale in Relation to Meteorology, Solar Radiation and Surface Ozone Fluxes. Atmosphere, 12(8), 1017. https://doi.org/10.3390/atmos12081017
Bader, M. K.-F., & Leuzinger, S. (2019). Hydraulic Coupling of a Leafless Kauri Tree Remnant to Conspecific Hosts. IScience, 19, 1238–1247. https://doi.org/10.1016/j.isci.2019.05.009
Baltzer, J. L., Veness, T., Chasmer, L. E., Sniderhan, A. E., & Quinton, W. L. (2014). Forests on thawing permafrost: fragmentation, edge effects, and net forest loss. Global Change Biology, 20(3), 824–834. https://doi.org/https://doi.org/10.1111/gcb.12349
Barron-Gafford, G. A., Sanchez-Cañete, E. P., Minor, R. L., Hendryx, S. M., Lee, E., Sutter, L. F., Tran, N., Parra, E., Colella, T., Murphy, P. C., Hamerlynck, E. P., Kumar, P., & Scott, R. L. (2017). Impacts of hydraulic redistribution on grass–tree competition vs facilitation in a semi-arid savanna. New Phytologist, 215(4), 1451–1461. https://doi.org/10.1111/nph.14693
Barron-Gafford, G. A., Knowles, J. F., Sanchez-Cañete, E. P., Minor, R. L., Lee, E., Sutter, L., Tran, N., Murphy, P., Hamerlynck, E. P., Kumar, P., & Scott, R. L. (2021). Hydraulic redistribution buffers climate variability and regulates grass-tree interactions in a semiarid riparian savanna. Ecohydrology, 14(3), e2271. https://doi.org/10.1002/eco.2271
Bayona-Rodríguez, C. J., & Romero, H. M. (2016). Estimation of transpiration in oil palm (Elaeis guineensis Jacq.) with the heat ratio method. Agronomía Colombiana, 34(2), 172–178. https://doi.org/10.15446/agron.colomb.v34n2.55649
Benyahia, F., Bastos Campos, F., Ben Abdelkader, A., Basile, B., Tagliavini, M., Andreotti, C., & Zanotelli, D. (2023). Assessing Grapevine Water Status by Integrating Vine Transpiration, Leaf Gas Exchanges, Chlorophyll Fluorescence and Sap Flow Measurements. Agronomy, 13(2), 464. https://doi.org/10.3390/agronomy13020464
Berkelhammer, M., Page, G. F., Zurek, F., Still, C., Carbone, M. S., Talavera, W., Hildebrand, L., Byron, J., Inthabandith, K., Kucinski, A., Carter, M., Foss, K., Brown, W., Carroll, R. W. H., Simonpietri, A., Worsham, M., Breckheimer, I., Ryken, A., Maxwell, R., … Williams, K. H. (2024). Canopy structure modulates the sensitivity of subalpine forest stands to interannual snowpack and precipitation variability. EGUsphere, 1–23. https://doi.org/10.5194/egusphere-2023-3063
Berry, Z. C., Looker, N., Holwerda, F., Gómez Aguilar, L. R., Ortiz Colin, P., González Martínez, T., & Asbjornsen, H. (2017). Why size matters: the interactive influences of tree diameter distribution and sap flow parameters on upscaled transpiration. Tree Physiology, 38(2), 263–275. https://doi.org/10.1093/treephys/tpx124
Binks, O., Mencuccini, M., Rowland, L., Costa, A. C. L., Carvalho, C. J. R., Bittencourt, P., Eller, C., Teodoro, G. S., Carvalho, E. J. M., Soza, A., Ferreira, L., Vasconcelos, S. S., Oliveira, R., & Meir, P. (2019). Foliar water uptake in Amazonian trees: Evidence and consequences. Global Change Biology, 25(8), 2678–2690. https://doi.org/10.1111/gcb.14666
Black, K. L., Wallace, C. A., & Baltzer, J. L. (2021). Seasonal thaw and landscape position determine foliar functional traits and whole-plant water use in tall shrubs on the low arctic tundra. New Phytologist, 231(1), 94–107. https://doi.org/10.1111/nph.17375
Bleby, T. M., Burgess, S. S. O., & Adams, M. A. (2004). A validation, comparison and error analysis of two heat-pulse methods for measuring sap flow in Eucalyptus marginata saplings. Functional Plant Biology, 31(6), 645–658. https://doi.org/10.1071/FP04013
Bleby, T. M., Mcelrone, A. J., & Jackson, R. B. (2010). Water uptake and hydraulic redistribution across large woody root systems to 20 m depth. Plant, Cell & Environment, 33(12), 2132–2148. https://doi.org/https://doi.org/10.1111/j.1365-3040.2010.02212.x
Bourne, A. E., Haigh, A. M., & Ellsworth, D. S. (2015). Stomatal sensitivity to vapour pressure deficit relates to climate of origin in Eucalyptus species. Tree Physiology, 35(3), 266–278. https://doi.org/10.1093/treephys/tpv014
Brighenti, S., Tagliavini, M., Comiti, F., Aguzzoni, A., Giuliani, N., Ben Abdelkader, A., Penna, D., & Zanotelli, D. (2024). Drip irrigation frequency leads to plasticity in root water uptake by apple trees. Agricultural Water Management, 298, 108870. https://doi.org/10.1016/j.agwat.2024.108870
Buckley, T. N., Turnbull, T. L., & Adams, M. A. (2012). Simple models for stomatal conductance derived from a process model: cross-validation against sap flux data. Plant, Cell & Environment, 35(9), 1647–1662. https://doi.org/10.1111/j.1365-3040.2012.02515.x
Buckley, T. N., Turnbull, T. L., Pfautsch, S., Gharun, M., & Adams, M. A. (2012). Differences in water use between mature and post-fire regrowth stands of subalpine Eucalyptus delegatensis R. Baker. Forest Ecology and Management, 270, 1–10. https://doi.org/10.1016/j.foreco.2012.01.008
Burgess, S. S. O., Adams, M. A., & Bleby, T. M. (2000). Measurement of sap flow in roots of woody plants: a commentary. Tree Physiology, 20(13), 909–913. https://doi.org/10.1093/treephys/20.13.909
Burgess, S. S. O., Adams, M. A., Turner, N. C., Beverly, C. R., Ong, C. K., Khan, A. A. H., & Bleby, T. M. (2001). An improved heat pulse method to measure low and reverse rates of sap flow in woody plants. Tree Physiology, 21(9), 589–598. https://doi.org/10.1093/treephys/21.9.589
Buyinza, J., Muthuri, C. W., Downey, A., Njoroge, J., Denton, M. D., & Nuberg, I. K. (2019). Contrasting water use patterns of two important agroforestry tree species in the Mt Elgon region of Uganda. Australian Forestry, 82(sup1), 57–65. https://doi.org/10.1080/00049158.2018.1547944
Buyinza, J., Muthuri, C. W., Denton, M. D., & Nuberg, I. K. (2023). Impact of tree pruning on water use in tree-coffee systems on smallholder farms in Eastern Uganda. Agroforestry Systems, 97(5), 953–964. https://doi.org/10.1007/s10457-023-00842-2
Campos, F. B., Montagnani, L., Benyahai, F., Callesen, T. O., Gonzales, C. V., Tagliavini, M., & Zanotelli, D. (2022). Disentangling the main sources of evapotranspiration in a vineyard. EGU General Assembly 2022. https://doi.org/https://doi.org/10.5194/egusphere-egu22-8231
Carbone, M. S., Williams, A. P., Ambrose, A. R., Boot, C. M., Bradley, E. S., Dawson, T. E., Schaeffer, S. M., Schimel, J. P., & Still, C. J. (2013). Cloud shading and fog drip influence the metabolism of a coastal pine ecosystem. Global Change Biology, 19(2), 484–497. https://doi.org/10.1111/gcb.12054
Chen, Y., Li, W., Zhou, H., Chen, Y., XinmingHao, Fu, A., & Ma, J. (2017). Experimental study on water transport observations of desert riparian forests in the lower reaches of the Tarim River in China. International Journal of Biometeorology, 61(6), 1055–1062. https://doi.org/10.1007/s00484-016-1285-x
Chen, Y., Evers, J. B., Yang, M., Wang, X., Zhang, Z., Sun, S., Zhang, Y., Wang, S., Ji, F., Xiang, D., Li, J., Ji, C., & Zhang, L. (2024). Cotton crop transpiration reveals opportunities to reduce yield loss when applying defoliants for efficient mechanical harvesting. Field Crops Research, 309, 109304. https://doi.org/10.1016/j.fcr.2024.109304
Coopman, R. E., Nguyen, H. T., Mencuccini, M., Oliveira, R. S., Sack, L., Lovelock, C. E., & Ball, M. C. (2021). Harvesting water from unsaturated atmospheres: deliquescence of salt secreted onto leaf surfaces drives reverse sap flow in a dominant arid climate mangrove, Avicennia marina. New Phytologist, 231(4), 1401–1414. https://doi.org/10.1111/nph.17461
Costelloe, J. F. (2016). Water use strategies of a dominant riparian tree species (Eucalyptus coolabah) in dryland rivers. Proceedings 11th International Symposium on Ecohydraulics, 26724.
del Campo, A., Gonzalez-Sanchis, M., Garcia-Pratz, A., Ceacero, C., & Lull, C. (2018). The impact of adaptive forest management on water fluxes and growth dynamics in a water-limited low-biomass oak coppice. Agricultural and Forest Meteorology, 264, 266–282. https://doi.org/https://doi.org/10.1016/j.agrformet.2018.10.016
del Campo, A. D., Fernandes, T. J. G., & Molina, A. J. (2014). Hydrology-oriented (adaptive) silviculture in a semiarid pine plantation: How much can be modified the water cycle through forest management? European Journal of Forest Research, 133(5), 879–894. https://doi.org/10.1007/s10342-014-0805-7
Deng, Z. (2015). Examination of Hydrodynamic Soil-Plant Water Relations With a New SPAC Model and Remote Sensing Experiments [Doctorate of Philosophy, Flinders University, School of the Environment.]. https://flex.flinders.edu.au/file/dfeb526e-89a2-4be6-ae23-ab9ff1837d39/1/ThesisDeng2015.pdf
Dios, V. R. de, Díaz‐Sierra, R., Goulden, M. L., Barton, C. V. M., Boer, M. M., Gessler, A., Ferrio, J. P., Pfautsch, S., & Tissue, D. T. (2013). Woody clockworks: circadian regulation of night-time water use in Eucalyptus globulus. New Phytologist, 200(3), 743–752. https://doi.org/10.1111/nph.12382
Doody, T. M., Gao, S., Vervoort, W., Pritchard, J., Davies, M., Nolan, M., & Nagler, P. L. (2023). A river basin spatial model to quantitively advance understanding of riverine tree response dynamics to water availability and hydrological management. Journal of Environmental Management, 332, 117393. https://doi.org/10.1016/j.jenvman.2023.117393
Doronila, A. I., & Forster, M. A. (2015). Performance Measurement Via Sap Flow Monitoring of Three Eucalyptus Species for Mine Site and Dryland Salinity Phytoremediation. International Journal of Phytoremediation, 17(2), 101–108. https://doi.org/10.1080/15226514.2013.850466
Drake, P. L., Coleman, B. F., & Vogwill, R. (2013). The response of semi-arid ephemeral wetland plants to flooding: linking water use to hydrological processes. Ecohydrology, 6(5), 852–862. https://doi.org/10.1002/eco.1309
Dubois, E., Cherif, S. M. A., Abidine, M. M., Bah, M. F. O., Chenal, J., Marshall, M., Oumarou, W., Grossiord, C., & Perona, P. (2024). Nature-based solution enhances resilience to flooding and catalyzes multi-benefits in coastal cities in the Global South. Science of The Total Environment, 928, 172282. https://doi.org/10.1016/j.scitotenv.2024.172282
Edwards, E. J., Betts, A., Clingeleffer, P. R., & Walker, R. R. (2022). Rootstock-conferred traits affect the water use efficiency of fruit production in Shiraz. Australian Journal of Grape and Wine Research, 28(2), 316–327. https://doi.org/10.1111/ajgw.12553
El Hajj, M. M., Almashharawi, S. K., Johansen, K., Elfarkh, J., & McCabe, M. F. (2022). Exploring the use of synthetic aperture radar data for irrigation management in super high-density olive orchards. International Journal of Applied Earth Observation and Geoinformation, 112, 102878. https://doi.org/10.1016/j.jag.2022.102878
El Hajj, M. M., Johansen, K., Almashharawi, S. K., & McCabe, M. F. (2023). Water uptake rates over olive orchards using Sentinel-1 synthetic aperture radar data. Agricultural Water Management, 288, 108462. https://doi.org/10.1016/j.agwat.2023.108462
Eliades, M., Bruggeman, A., Djuma, H., & Lubczynski, M. W. (2018). Tree Water Dynamics in a Semi-Arid, Pinus brutia Forest. Water, 10(8), 1039. https://doi.org/10.3390/w10081039
Eliades, M., Bruggeman, A., Lubczynski, M. W., Christou, A., Camera, C., & Djuma, H. (2018). The water balance components of Mediterranean pine trees on a steep mountain slope during two hydrologically contrasting years. Journal of Hydrology, 562, 712–724. https://doi.org/10.1016/j.jhydrol.2018.05.048
Eller, C. B., Burgess, S. S. O., & Oliveira, R. S. (2015). Environmental controls in the water use patterns of a tropical cloud forest tree species, Drimys brasiliensis (Winteraceae). Tree Physiology, 35(4), 387–399. https://doi.org/10.1093/treephys/tpv001
Eller, C. B., Lima, A. L., & Oliveira, R. S. (2013). Foliar uptake of fog water and transport belowground alleviates drought effects in the cloud forest tree species, Drimys brasiliensis (Winteraceae). New Phytologist, 199(1), 151–162. https://doi.org/10.1111/nph.12248
SFM1 CIS Software

Combined Instrument Software (CIS) requires additional Microsoft software installed, as well as a driver for the USB Comm Port.

CIS and Instrument Installation Instruction:

  1. Ensure the SFM1 is not connected to the computer.
  2. Install the “CDM v2.12.28 WHQL: Certified” Virtual Com Port Driver found here: https://ftdichip.com/wp-content/uploads/2021/08/CDM212364_Setup.zip
  3. Download and install (For Windows 10 AMD/Intel) the “Microsoft Visual C++ 2010 Redistributable Package. This is available from the Microsoft download page: https://www.microsoft.com/en-au/download/details.aspx?id=26999
  4. Download and Install both the vcredist_x86.exe and vcredist_x64.exe packages from the pop up screen.
  5. Install the ICT Combined Instrument Software:
    1. Select “No” to warning about completely removing existing installations and all of its components.
    2. Select “Next”
    3. Change the install location from “\ICT International\ICT Instrument\” to “\ICT International\ICT Instrument\
    4. Select “Install”
    5. Untick “Run ICT Instrument” to prevent opening the application whilst changing the shortcut name (see below)
    6. Select “Finish”
  6. On the Desktop of your PC, change the file name of “ICT Instrument” to “ICT CIS”
  7. Open this shortcut, and confirm on the left of the software that it displays “”

SFT Sap Flow Tool Software Download:

Please download the Sap Flow Tool Software following this link – please note, purchase of license and physical dongle are required

Sap Flow Tool v1.5.1 for Windows can be downloaded here