ICT International

Advancing soil, plant and environmental decision making

User manuals and software for the PSY1 Psychrometer

Technical Specifications
Downloads Available
Psychrometers publications
Renny, M. N. (2023). Organic Bioelectronics for Plant Physiology [Ph.D., University of Colorado at Boulder]. https://www.proquest.com/docview/2860588307/abstract/4EC1D7521FBC4DE2PQ/1
Hartill, G. E., Blackman, C. J., Halliwell, B., Jones, R. C., Holland, B. R., & Brodribb, T. J. (2023). Cold temperature and aridity shape the evolution of drought tolerance traits in Tasmanian species of Eucalyptus. Tree Physiology, 43(9), 1493–1500. https://doi.org/10.1093/treephys/tpad065
Delval, L., Jonard, F., & Javaux, M. (2024). Simultaneous in situ monitoring of belowground, stem and relative stomatal hydraulic conductances of grapevine demonstrates a soil-texture specific transpiration control. https://doi.org/10.21203/rs.3.rs-4419968/v1
Feng, F., Wagner, Y., Klein, T., & Hochberg, U. (2023). Xylem resistance to cavitation increases during summer in Pinus halepensis. Plant, Cell & Environment, 46(6), 1849–1859. https://doi.org/10.1111/pce.14573
Prats, K. A., Fanton, A. C., Brodersen, C. R., & Furze, M. E. (2023). Starch depletion in the xylem and phloem ray parenchyma of grapevine stems under drought. AoB PLANTS, 15(5), plad062. https://doi.org/10.1093/aobpla/plad062
Shi, W., Li, J., Zhan, H., Yu, L., Wang, C., & Wang, S. (2023). Relation between Water Storage and Photoassimilate Accumulation of Neosinocalamus affinis with Phenology. Forests, 14(3), 531. https://doi.org/10.3390/f14030531
Avila, R. T., Kane, C. N., Batz, T. A., Trabi, C., Damatta, F. M., Jansen, S., & McAdam, S. A. M. (2023). The relative area of vessels in xylem correlates with stem embolism resistance within and between genera. Tree Physiology, 43(1), 75–87. https://doi.org/10.1093/treephys/tpac110
Agronomy | Free Full-Text | Impact of Fruit Load on the Replenishment Dynamics of Internal Water Reserves in Olive Trees. (n.d.). Retrieved June 18, 2024, from https://www.mdpi.com/2073-4395/14/5/1026
Ziegler, C., Cochard, H., Stahl, C., Foltzer, L., Gérard, B., Goret, J.-Y., Bonal, D., Heuret, P., Levionnois, S., Maillard, P., & Coste, S. (2023). Vulnerability to extreme drought is linked to hydraulic strategies and not carbohydrate use across 12 rainforest tree species. https://doi.org/10.22541/au.167638853.33022411/v1
Salinas, J., Padilla, F. M., Thompson, R. B., Teresa Peña-Fleitas, M., López-Martín, M., & Gallardo, M. (2023). Responses of yield, fruit quality and water relations of sweet pepper in Mediterranean greenhouses to increasing salinity. Agricultural Water Management, 290, 108578. https://doi.org/10.1016/j.agwat.2023.108578
Mohamad, S. A. (2022). IMPACT OF Elaeidobius kamerunicus (Faust) INTRODUCTION ON OIL PALM FRUIT FORMATION IN MALAYSIA AND FACTORS AFFECTING ITS POLLINATION EFFICIENCY: A REVIEW. Journal of Oil Palm Research. https://doi.org/10.21894/jopr.2022.0021
Gori, A., Moura, B. B., Sillo, F., Alderotti, F., Pasquini, D., Balestrini, R., Ferrini, F., Centritto, M., & Brunetti, C. (2023). Unveiling resilience mechanisms of Quercus ilex seedlings to severe water stress: Changes in non-structural carbohydrates, xylem hydraulic functionality and wood anatomy. Science of The Total Environment, 878, 163124. https://doi.org/10.1016/j.scitotenv.2023.163124
Haverroth, E. J., Da-Silva, C. J., Taggart, M., Oliveira, L. A., & Cardoso, A. A. (2024). Shoot hydraulic impairments induced by root waterlogging: parallels and contrasts with drought. Plant Physiology, kiae336. https://doi.org/10.1093/plphys/kiae336
Delval, L., Jonard, F., & Javaux, M. (2024). Simultaneous in situ monitoring of belowground, stem and relative stomatal hydraulic conductances of grapevine demonstrates a soil-texture specific transpiration control. https://doi.org/10.21203/rs.3.rs-4419968/v1
Agronomy | Free Full-Text | Impact of Fruit Load on the Replenishment Dynamics of Internal Water Reserves in Olive Trees. (n.d.). Retrieved June 5, 2024, from https://www.mdpi.com/2073-4395/14/5/1026
Ziegler, C., Cochard, H., Stahl, C., Foltzer, L., Gérard, B., Goret, J.-Y., Heuret, P., Levionnois, S., Maillard, P., Bonal, D., & Coste, S. (2024). Residual water losses mediate the trade-off between growth and drought survival across saplings of 12 tropical rainforest tree species with contrasting hydraulic strategies. Journal of Experimental Botany, erae159. https://doi.org/10.1093/jxb/erae159
Chen, Y., Evers, J. B., Yang, M., Wang, X., Zhang, Z., Sun, S., Zhang, Y., Wang, S., Ji, F., Xiang, D., Li, J., Ji, C., & Zhang, L. (2024). Cotton crop transpiration reveals opportunities to reduce yield loss when applying defoliants for efficient mechanical harvesting. Field Crops Research, 309, 109304. https://doi.org/10.1016/j.fcr.2024.109304
Optimizing bent branch numbers improves transpiration and crop water productivity of cut rose (Rosa hybrida) in greenhouse – ScienceDirect. (n.d.). Retrieved June 5, 2024, from https://www.sciencedirect.com/science/article/pii/S0378377424001306
Haverroth, E. J., Rimer, I. M., Oliveira, L. A., de Lima, L. G. A., Cesarino, I., Martins, S. C. V., McAdam, S. A. M., & Cardoso, A. A. (n.d.). Gradients in embolism resistance within stems driven by secondary growth in herbs. Plant, Cell & Environment, n/a(n/a). https://doi.org/10.1111/pce.14921
Guo, J. S., Barnes, M. L., Smith, W. K., Anderegg, W. R. L., & Kannenberg, S. A. (2024). Dynamic regulation of water potential in Juniperus osteosperma mediates ecosystem carbon fluxes. New Phytologist, n/a(n/a). https://doi.org/10.1111/nph.19805
Kokkotos, T., Zotos, A., & Patakas, A. (2024). The Ecophysiological Response of Olive Trees under Different Fruit Loads. Life, 14(128), 14. https://doi.org/doi.org/10.3390/life14010128
Wang, Y., Liao, T., Guo, L., Liu, G., & Xi, B. (2023). Hydraulics Facilitate Urban Forest Establishment by Informing Tree Dynamics under Drought. Forests, 14(12). https://doi.org/https://doi.org/10.3390/f14122415
Lakmali, S., Benyon, R. G., Sheridan, G. J., & Lane, P. N. J. (2022). Change in fire frequency drives a shift in species composition in native Eucalyptus regnans forests: Implications for overstorey forest structure and transpiration. Ecohydrology, 15(3), e2412. https://doi.org/10.1002/eco.2412
Carins-Murphy, M. R., Cochard, H., Deans, R. M., Gracie, A. J., & Brodribb, T. J. (2023). Combined heat and water stress leads to local xylem failure and tissue damage in pyrethrum flowers. Plant Physiology, kiad349. https://doi.org/10.1093/plphys/kiad349
Lamarque, L. J., Delmas, C. E. L., Charrier, G., Burlett, R., Dell’Acqua, N., Pouzoulet, J., Gambetta, G. A., & Delzon, S. (2023). Quantifying the grapevine xylem embolism resistance spectrum to identify varieties and regions at risk in a future dry climate. Scientific Reports, 13(1), 7724. https://doi.org/10.1038/s41598-023-34224-6
Skelton, R. P., Anderegg, L. D. L., Diaz, J., Kling, M. M., Papper, P., Lamarque, L. J., Delzon, S., Dawson, T. E., & Ackerly, D. D. (2021). Evolutionary relationships between drought-related traits and climate shape large hydraulic safety margins in western North American oaks. Proceedings of the National Academy of Sciences, 118(10). https://doi.org/10.1073/pnas.2008987118
Liu, N., Guan, H., Luo, Z., Zhang, C., Wang, H., & Zhang, X. (2016). Examination of a coupled supply- and demand-induced stress function for root water uptake modeling. Hydrology Research, 48(1), 66–76. https://doi.org/10.2166/nh.2016.173
Li, X., Smith, R., Choat, B., & Tissue, D. T. (2020). Drought resistance of cotton (Gossypium hirsutum) is promoted by early stomatal closure and leaf shedding. Functional Plant Biology, 47(2), 91–98. https://doi.org/10.1071/FP19093
Williams, C. B., Reese Næsborg, R., Ambrose, A. R., Baxter, W. L., Koch, G. W., & Dawson, T. E. (2021). The dynamics of stem water storage in the tops of Earth’s largest trees—Sequoiadendron giganteum. Tree Physiology, 41(12), 2262–2278. https://doi.org/10.1093/treephys/tpab078
Skelton, R. P., West, A. G., Buttner, D., & Dawson, T. E. (2023). Consistent responses to moisture stress despite diverse growth forms within mountain fynbos communities. Oecologia. https://doi.org/10.1007/s00442-023-05326-9
Guan, X., Werner, J., Cao, K.-F., Pereira, L., Kaack, L., McAdam, S. a. M., & Jansen, S. (2022). Stem and leaf xylem of angiosperm trees experiences minimal embolism in temperate forests during two consecutive summers with moderate drought. Plant Biology, n/a(n/a). https://doi.org/10.1111/plb.13384
Smith-Marin, C. M., Muscarella, R., Ankori-Karlinsky, R., Delzon, S., Farrar, S. L., Salva-Sauri, M., Thompson, J., Zimmerman, J. K., & Uriarte, M. (2022). Hydraulic traits are not robust predictors of tree species stem growth during a severe drought in a wet tropical forest. Functional Ecology, n/a(n/a). https://doi.org/10.1111/1365-2435.14235
Jorda, H., Ahmed, M. A., Javaux, M., Carminati, A., Duddek, P., Vetterlein, D., & Vanderborght, J. (2022). Field scale plant water relation of maize (Zea mays) under drought – impact of root hairs and soil texture. Plant and Soil, 478(1), 59–84. https://doi.org/10.1007/s11104-022-05685-x
Corso, D., Delzon, S., Lamarque, L. J., Cochard, H., Torres-Ruiz, J. M., King, A., & Brodribb, T. (2020). Neither xylem collapse, cavitation, or changing leaf conductance drive stomatal closure in wheat. Plant, Cell & Environment, 43(4), 854–865. https://doi.org/10.1111/pce.13722
Lucani, C. J., Brodribb, T. J., Jordan, G. J., & Mitchell, P. J. (2019). Juvenile and adult leaves of heteroblastic Eucalyptus globulus vary in xylem vulnerability. Trees, 33(4), 1167–1178. https://doi.org/10.1007/s00468-019-01851-4
Dainese, R., Lima Lopes, B. de C. F., Tedeschi, G., Lamarque, L. J., Delzon, S., Fourcaud, T., & Tarantino, A. (2021). Cross-validation on saplings of High-Capacity Tensiometer and Thermocouple Psychrometer for continuous monitoring of xylem water potential. Journal of Experimental Botany, erab412. https://doi.org/10.1093/jxb/erab412
Cermák, J., Nadezhdina, N., Trcala, M., & Simon, J. (2015). Open field-applicable instrumental methods for structural and functional assessment of whole trees and stands. IForest – Biogeosciences and Forestry, 8(3), 226. https://doi.org/10.3832/ifor1116-008
Cardoso, A. A., Brodribb, T. J., Kane, C. N., DaMatta, F. M., & McAdam, S. A. M. (2020). Osmotic adjustment and hormonal regulation of stomatal responses to vapour pressure deficit in sunflower. AoB PLANTS, 12(4), plaa025. https://doi.org/10.1093/aobpla/plaa025
Caplan, D., Dixon, M., & Zheng, Y. (2019). Increasing Inflorescence Dry Weight and Cannabinoid Content in Medical Cannabis Using Controlled Drought Stress. HortScience, 54(5), 964–969. https://doi.org/https://doi.org/10.21273/HORTSCI13510-18
Amrutha, S., Muneera Parveen, A. B., Muthupandi, M., Sivakumar, V., Nautiyal, R., & Dasgupta, M. G. (2019). Variation in morpho-physiological, biochemical and molecular responses of two Eucalyptus species under short-term water stress. Acta Botanica Croatica, 78(2), 125–134. https://doi.org/10.2478/botcro-2019-0021
Gauthey, A., Peters, J. M. R., Lòpez, R., Carins-Murphy, M. R., Rodriguez-Dominguez, C. M., Tissue, D. T., Medlyn, B. E., Brodribb, T. J., & Choat, B. (2022). Mechanisms of xylem hydraulic recovery after drought in Eucalyptus saligna. Plant, Cell & Environment, 45(4), 1216–1228. https://doi.org/10.1111/pce.14265
Gauthey, A., Backes, D., Balland, J., Alam, I., Maher, D. T., Cernusak, L. A., Duke, N. C., Medlyn, B. E., Tissue, D. T., & Choat, B. (2022). The Role of Hydraulic Failure in a Massive Mangrove Die-Off Event. Frontiers in Plant Science, 13. https://www.frontiersin.org/articles/10.3389/fpls.2022.822136
Smith-Martin, C. M., Muscarella, R., Ankori-Karlinsky, R., Delzon, S., Farrar, S. L., Salva-Sauri, M., Thompson, J., Zimmerman, J. K., & Uriarte, M. (2022). Hurricanes increase tropical forest vulnerability to drought. New Phytologist, 235(3), 1005–1017. https://doi.org/10.1111/nph.18175
Brodribb, T. J., Carriquí, M., Delzon, S., McAdam, S. a. M., & Holbrook, N. M. (2020). Advanced vascular function discovered in a widespread moss. Nature Plants, 6(3), 273–279. https://doi.org/10.1038/s41477-020-0602-x
Johnson, K. M., Lucani, C., & Brodribb, T. J. (2022). In vivo monitoring of drought-induced embolism in Callitris rhomboidea trees reveals wide variation in branchlet vulnerability and high resistance to tissue death. New Phytologist, 233(1), 207–218. https://doi.org/10.1111/nph.17786
Jiang, G.-F., Brodribb, T. J., Roddy, A. B., Lei, J.-Y., Si, H.-T., Pahadi, P., Zhang, Y.-J., & Cao, K.-F. (2021). Contrasting Water Use, Stomatal Regulation, Embolism Resistance, and Drought Responses of Two Co-Occurring Mangroves. Water, 13(14), 1945. https://doi.org/10.3390/w13141945
Powers, J. S., Vargas G., G., Brodribb, T. J., Schwartz, N. B., Pérez-Aviles, D., Smith-Martin, C. M., Becknell, J. M., Aureli, F., Blanco, R., Calderón-Morales, E., Calvo-Alvarado, J. C., Calvo-Obando, A. J., Chavarría, M. M., Carvajal-Vanegas, D., Jiménez-Rodríguez, C. D., Murillo Chacon, E., Schaffner, C. M., Werden, L. K., Xu, X., & Medvigy, D. (2020). A catastrophic tropical drought kills hydraulically vulnerable tree species. Global Change Biology, 26(5), 3122–3133. https://doi.org/10.1111/gcb.15037
Brodribb, T. J., Carriqui, M., Delzon, S., & Lucani, C. (2017). Optical Measurement of Stem Xylem Vulnerability. Plant Physiology, 174(4), 2054–2061. https://doi.org/10.1104/pp.17.00552
Zhang, F.-P., & Brodribb, T. J. (2017). Are flowers vulnerable to xylem cavitation during drought? Proceedings of the Royal Society B: Biological Sciences, 284(1854), 20162642. https://doi.org/10.1098/rspb.2016.2642
Zhang, F.-P., Zhang, J.-L., Brodribb, T. J., & Hu, H. (2021). Cavitation resistance of peduncle, petiole and stem is correlated with bordered pit dimensions in Magnolia grandiflora. Plant Diversity, 43(4), 324–330. https://doi.org/10.1016/j.pld.2020.11.007
Combined Instrument Software (CIS) Installation Instructions

Combined Instrument Software (CIS) requires additional Microsoft software installed, as well as driver for the USB Comm Port.

CIS and Instrument Installation Instruction:

  1. Ensure the instrument is not connected to the computer.
  2. Install the “CDM v2.12.28 WHQL: Certified” Virtual Com Port Driver found here: https://ftdichip.com/wp-content/uploads/2021/08/CDM212364_Setup.zip
  3. Download and install (For Windows 10 AMD/Intel) the “Microsoft Visual C++ 2010 Redistributable Package. This is available from the Microsoft download page: https://www.microsoft.com/en-au/download/details.aspx?id=26999
  4. Download and Install both the vcredist_x86.exe and vcredist_x64.exe packages from the pop up screen.
  5. Install the ICT Combined Instrument Software:
    1. Select “No” to warning about completely removing existing installations and all of its components.
    2. Select “Next”
    3. Change the install location from “\ICT International\ICT Instrument\” to “\ICT International\ICT Instrument 1.0.6.8\
    4. Select “Install”
    5. Untick “Run ICT Instrument 1.0.6.8” to prevent opening the application whilst changing the shortcut name (see below)
    6. Select “Finish”
  6. On the Desktop of your PC, change the file name of “ICT Instrument” to “ICT CIS 1.0.6.8”
  7. Open this shortcut, and confirm on the left of the software that it displays “1.0.6.8”