Sap Flow Installation Scenarios

ICT International
Golden Rule

Install your sensors according to your hypotheses!
Arbitrary Sampling

- User arbitrarily chooses which species to sample where to install on a tree

- Typical scenario:
 - Only on north facing stems in southern hemisphere
 - Only on south facing stems in northern hemisphere

- Assuming sap flow is constant around the circumference of the tree

- Good choice if you have a limited number of sensors or you have a general hypothesis
Random Sampling

- Randomly select species and then trees within species
- Randomly select a location around the circumference to install sensor
- Not a common approach
- Not recommended unless you have a very large number of sensors
Stratified Sampling

• Definition: sample each subpopulation of an overall population independently

 • For example: you have 12 SFM1 units to install into 12 trees:

 • 12 trees of Species A are all the same diameter

 • Subdivide the circumference of the tree into 4 quadrants (e.g. north, south, east, west faces)

 • Randomly select 3 trees and install 3 units on the north face
 • Randomly select 3 trees and install 3 units on the south face
 • Randomly select 3 trees and install 3 units on the east face
 • Randomly select 3 trees and install 3 units on the west face
Comprehensive Sampling

• Install as many sensors at as many locations around circumference and at different depths as possible

• Typical scenario:
 • At start of study, comprehensively sample select trees to understand their sap physiology. Then arbitrarily sample a larger selection of trees.
 • A study may comprehensively sample only a single tree

• If you have the resources, definitely choose this option!
How to Measure Forest Water Use

- Sample trees according to:
 - Number of species
 - Diameter at Breast Height (DBH)
 - Sapwood diameter
 - Leaf Area Index (LAI)
 - Crown extent

- Cermak et al. (2004):
 - Dominant trees (1/3) = 66% water use
 - Medium trees = 25% water use
 - Suppressed trees = ~10% water use
How to Measure Forest Water Use

Quantiles of Total Technique (Cermak et al., 2004)

• Definitions:
 • $B =$ Biometric Parameter (e.g. DBH, LAI, sapwood area)
 • Stand (e.g. 100x100m plot)
 • Tree (free standing stem, multiple stems???)
 • $k =$ number of sample stems (chosen by number of sensors)

• Method:
 • Measure B for all trees in stand
 • Sort B from smallest to largest
 • Calculate cumulative B for stand to give total = B_{stand}
 • Divide B_{stand} by k to give B_{port}
 • Sample tree = $B_{\text{port}} \times (\text{Sample}_i - 0.5)$
How to Measure Forest Water Use

Quantiles of Total Technique (Cermak et al., 2004)

- Example calculation:
 - 12 trees in a 20x20m plot
 - 3 x SFM1 instruments available
 - $B = \text{stem area based on DBH}$
 - $B = \pi (\text{DBH}/2)^2$
 - $B_{\text{stand}} = 2065.4135$
 - $B_{\text{port}} = B_{\text{stand}} / k = 688.471$
 - Sample = $B_{\text{port}} \times (\text{Sample}_i - 0.5)$
 - Sample 1 = 688.471 * (1-0.5)
 - Sample 1 = 344.236
 - Sample 2 = 688.471 * (2-0.5)
 - Sample 2 = 1032.707
 - Sample 3 = 688.471 * (3-0.5)
 - Sample 3 = 1721.178

<table>
<thead>
<tr>
<th>Tree No.</th>
<th>DBH (cm)</th>
<th>Stem Area (cm2)</th>
<th>Cumul. Area (cm2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3.5</td>
<td>9.61625</td>
<td>9.61625</td>
</tr>
<tr>
<td>2</td>
<td>5</td>
<td>19.625</td>
<td>29.24125</td>
</tr>
<tr>
<td>3</td>
<td>6.7</td>
<td>35.23865</td>
<td>64.4799</td>
</tr>
<tr>
<td>4</td>
<td>9.1</td>
<td>65.00585</td>
<td>129.48575</td>
</tr>
<tr>
<td>5</td>
<td>10.3</td>
<td>83.28065</td>
<td>212.7664</td>
</tr>
<tr>
<td>6</td>
<td>10.8</td>
<td>91.5624</td>
<td>304.3288</td>
</tr>
<tr>
<td>7</td>
<td>13.4</td>
<td>140.9546</td>
<td>445.2834</td>
</tr>
<tr>
<td>8</td>
<td>13.6</td>
<td>145.1936</td>
<td>590.477</td>
</tr>
<tr>
<td>9</td>
<td>15.2</td>
<td>181.3664</td>
<td>771.8434</td>
</tr>
<tr>
<td>10</td>
<td>17.6</td>
<td>243.1616</td>
<td>1015.005</td>
</tr>
<tr>
<td>11</td>
<td>21.9</td>
<td>376.49385</td>
<td>1391.49885</td>
</tr>
<tr>
<td>12</td>
<td>29.3</td>
<td>673.91465</td>
<td>2065.4135</td>
</tr>
</tbody>
</table>
How to Measure Forest Water Use

Quantiles of Total Technique (Cermak et al., 2004)

• Sample 1 = 344.236
• Sample 2 = 1032.707
• Sample 3 = 1721.178

<table>
<thead>
<tr>
<th>Tree No.</th>
<th>DBH (cm)</th>
<th>Stem Area (cm²)</th>
<th>Cumul. Area (cm²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3.5</td>
<td>9.61625</td>
<td>9.61625</td>
</tr>
<tr>
<td>2</td>
<td>5</td>
<td>19.625</td>
<td>29.24125</td>
</tr>
<tr>
<td>3</td>
<td>6.7</td>
<td>35.23865</td>
<td>64.4799</td>
</tr>
<tr>
<td>4</td>
<td>9.1</td>
<td>65.00585</td>
<td>129.48575</td>
</tr>
<tr>
<td>5</td>
<td>10.3</td>
<td>83.28065</td>
<td>212.7664</td>
</tr>
<tr>
<td>6</td>
<td>10.8</td>
<td>91.5624</td>
<td>304.3288</td>
</tr>
<tr>
<td>7</td>
<td>13.4</td>
<td>140.9546</td>
<td>445.2834</td>
</tr>
<tr>
<td>8</td>
<td>13.6</td>
<td>145.1936</td>
<td>590.477</td>
</tr>
<tr>
<td>9</td>
<td>15.2</td>
<td>181.3664</td>
<td>771.8434</td>
</tr>
<tr>
<td>10</td>
<td>17.6</td>
<td>243.1616</td>
<td>1015.005</td>
</tr>
<tr>
<td>11</td>
<td>21.9</td>
<td>376.49385</td>
<td>1391.49885</td>
</tr>
<tr>
<td>12</td>
<td>29.3</td>
<td>673.91465</td>
<td>2065.4135</td>
</tr>
</tbody>
</table>
How to Measure Forest Water Use

Diameter Class Technique (Cermak et al., 2004)

- Method:
 - Measure DBH of all trees in plot or area of interest
 - Divide trees into DBH classes (e.g. 0 – 2cm; 2.1 – 4cm; 4.1 – 6cm etc)
 - Number of classes may depend on number of available sensors
 - Generate a scaling curve between Q and a Biometric Parameter
How to Measure Forest Water Use

• **Scaling Curves:**
 - Basal area
 - Sapwood area
 - Leaf Area Index

• **Stand Transpiration:**
 - Find mean transpiration in each sampling class
 - Multiply this by number of trees (or stems) in sampling class

Source: Fig 7. Cermak et al. (2004)
How to Measure Massive Trees

• Large tree with many branches, multiple stems, or a large tree with no dominant trunk:
 • Use same methodology as though you were sampling a forest, in this case individual branches or trunks are equivalent to stems in a forest

• Large tree with a dominant trunk:
 • Comprehensive sample
How to Measure Hydraulic Redistribution

Source: Burgess et al. (2000)
How to Measure Hydraulic Redistribution

Reference: Ambrose et al. (2010)
How to Measure Stem Refilling

SFM1 Sap Flow Meter
SFM1 at Crown Height
SFM1 at Breast Height

Stem Refilling & Sap Flow

Sap Velocity (cm/hr)

Midday Midnight Midday

Stem Refilling
How to Measure Stem Refilling

DBL60 Dendrometer

SFM1 Sap Flow Meter
Dendrometer V Sap Flow

DBL60 Dendrometer

SFM1 Sap Flow Meter

Tree Circumference (mm)

Sap Flow (cm/hr)
Stem Refilling & Dendrometers

DBL60 Dendrometer

SFM1 Sap Flow Meter
How to Measure Nocturnal Transpiration

SFM1 Sap Flow Meter

Enabling better global research outcomes in soil, plant & environmental monitoring
Nocturnal Transpiration & SFM1

SFM1 at Crown Height
SFM1 at Breast Height

Nocturnal Transpiration
How to Measure Nocturnal Transpiration

Linear correlation is needed between sap flow and VPD

Sugar Gum (*Eucalyptus cladocalyx*)

Yellow Box (*Eucalyptus melliodora*)

Blue-leaved Mallee (*Eucalyptus polybractea*)

Positive correlation between transpiration and VPD

ICT International Pty Ltd
Solutions for soil, plant and environmental monitoring

www.ictinternational.com
sales@international.com.au

Phone: 61 2 6772 6770
Fax: 61 2 6772 7616
PO Box 503, Armidale, NSW, Australia, 2350